login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027180
a(n) = Sum_{0<=j<=i<=n} A027170(i, j).
1
1, 7, 27, 79, 199, 459, 1003, 2119, 4383, 8947, 18115, 36495, 73303, 146971, 294363, 589207, 1178959, 2358531, 4717747, 9436255, 18873351, 37747627, 75496267, 150993639, 301988479, 603978259, 1207957923, 2415917359, 4831836343, 9663674427, 19327350715
OFFSET
0,2
FORMULA
a(n) = 18*2^n - 2*n^2 - 10*n - 17.
From Colin Barker, Feb 20 2016: (Start)
a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4) for n>3.
G.f.: (1+x)^2 / ((1-x)^3*(1-2*x)).
(End)
MATHEMATICA
LinearRecurrence[{5, -9, 7, -2}, {1, 7, 27, 79}, 50] (* Harvey P. Dale, Jul 08 2019 *)
PROG
(PARI) Vec((1+x)^2/((1-x)^3*(1-2*x)) + O(x^40)) \\ Colin Barker, Feb 20 2016
CROSSREFS
Partial sums of A027178.
Sequence in context: A161410 A267169 A266761 * A036597 A338230 A038092
KEYWORD
nonn,easy
STATUS
approved