login
A027180
a(n) = Sum_{0<=j<=i<=n} A027170(i, j).
1
1, 7, 27, 79, 199, 459, 1003, 2119, 4383, 8947, 18115, 36495, 73303, 146971, 294363, 589207, 1178959, 2358531, 4717747, 9436255, 18873351, 37747627, 75496267, 150993639, 301988479, 603978259, 1207957923, 2415917359, 4831836343, 9663674427, 19327350715
OFFSET
0,2
FORMULA
a(n) = 18*2^n - 2*n^2 - 10*n - 17.
From Colin Barker, Feb 20 2016: (Start)
a(n) = 5*a(n-1)-9*a(n-2)+7*a(n-3)-2*a(n-4) for n>3.
G.f.: (1+x)^2 / ((1-x)^3*(1-2*x)).
(End)
MATHEMATICA
LinearRecurrence[{5, -9, 7, -2}, {1, 7, 27, 79}, 50] (* Harvey P. Dale, Jul 08 2019 *)
PROG
(PARI) Vec((1+x)^2/((1-x)^3*(1-2*x)) + O(x^40)) \\ Colin Barker, Feb 20 2016
CROSSREFS
Partial sums of A027178.
Sequence in context: A161410 A267169 A266761 * A036597 A338230 A038092
KEYWORD
nonn,easy
STATUS
approved