login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266677
Alternating sum of hexagonal pyramidal numbers.
5
0, -1, 6, -16, 34, -61, 100, -152, 220, -305, 410, -536, 686, -861, 1064, -1296, 1560, -1857, 2190, -2560, 2970, -3421, 3916, -4456, 5044, -5681, 6370, -7112, 7910, -8765, 9680, -10656, 11696, -12801, 13974, -15216, 16530, -17917, 19380, -20920, 22540
OFFSET
0,3
COMMENTS
More generally, the ordinary generating function for the alternating sum of k-gonal pyramidal numbers is x*(1 + (3 - k)*x)/((x - 1)*(x + 1)^4).
LINKS
OEIS Wiki, Figurate numbers
Eric Weisstein's World of Mathematics, Pyramidal Number
Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number
FORMULA
G.f.: x*(1 - 3*x)/((x - 1)*(x + 1)^4).
a(n) = ((-1)^n*(2*n*(n + 2)*(4*n + 1) - 3) + 3)/24.
a(n) = Sum_{k = 0..n} (-1)^k*A002412(k).
MATHEMATICA
Table[((-1)^n (2 n (n + 2) (4 n + 1) - 3) + 3)/24, {n, 0, 40}]
LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -1, 6, -16, 34}, 40]
PROG
(PARI) concat(0, Vec(x*(1 - 3*x)/((x - 1)*(x + 1)^4) + O(x^50))) \\ Michel Marcus, Feb 02 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Ilya Gutkovskiy, Feb 02 2016
STATUS
approved