login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266677 Alternating sum of hexagonal pyramidal numbers. 5
0, -1, 6, -16, 34, -61, 100, -152, 220, -305, 410, -536, 686, -861, 1064, -1296, 1560, -1857, 2190, -2560, 2970, -3421, 3916, -4456, 5044, -5681, 6370, -7112, 7910, -8765, 9680, -10656, 11696, -12801, 13974, -15216, 16530, -17917, 19380, -20920, 22540 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

More generally, the ordinary generating function for the alternating sum of k-gonal pyramidal numbers is x*(1 + (3 - k)*x)/((x - 1)*(x + 1)^4).

LINKS

Table of n, a(n) for n=0..40.

Ilya Gutkovskiy, Extended graphic representation

OEIS Wiki, Figurate numbers

Eric Weisstein's World of Mathematics, Pyramidal Number

Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number

Index entries for linear recurrences with constant coefficients, signature (-3,-2,2,3,1).

FORMULA

G.f.: x*(1 - 3*x)/((x - 1)*(x + 1)^4).

a(n) = ((-1)^n*(2*n*(n + 2)*(4*n + 1) - 3) + 3)/24.

a(n) = Sum_{k = 0..n} (-1)^k*A002412(k).

MATHEMATICA

Table[((-1)^n (2 n (n + 2) (4 n + 1) - 3) + 3)/24, {n, 0, 40}]

LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -1, 6, -16, 34}, 40]

PROG

(PARI) concat(0, Vec(x*(1 - 3*x)/((x - 1)*(x + 1)^4) + O(x^50))) \\ Michel Marcus, Feb 02 2016

CROSSREFS

Cf. A000292, A002412, A002717, A173196.

Sequence in context: A118014 A236773 A131820 * A083053 A083046 A192749

Adjacent sequences:  A266674 A266675 A266676 * A266678 A266679 A266680

KEYWORD

sign,easy

AUTHOR

Ilya Gutkovskiy, Feb 02 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 20:40 EST 2018. Contains 299656 sequences. (Running on oeis4.)