login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265653
Integers k such that (k-1)^3 + 1 is a Fermat pseudoprime to base 2 (A001567).
1
13, 37, 139, 271, 547, 4801, 7561, 12841, 14701, 358201, 678481, 16139971, 22934101, 55058581, 59553721, 74371321, 113068381, 116605861, 242699311, 997521211, 1592680321, 1652749201, 3190927741, 5088964801, 6974736757, 9214178821
OFFSET
1,1
COMMENTS
Corresponding Fermat pseudoprimes to base 2 are 1729, 46657, 2628073, 19683001, 162771337, 110592000001, 432081216001, ...
There is only one composite term up to 10^10: 14701. It also appears in A265628 (see comments). Can we say that if there is a Fermat pseudoprime to base 2 of the form (k-1)^3 + 1, k is a prime number most of the time? Are there other composite terms like 14701?
FORMULA
a(n) = A270840(n) + 1.
EXAMPLE
13 is a term because (13-1)^3 + 1 = 1729, which is a Fermat pseudoprime to base 2.
37 is a term because (37-1)^3 + 1 = 46657, which is a Fermat pseudoprime to base 2.
MATHEMATICA
Select[Range[10^6], ! PrimeQ@ # && PowerMod[2, (# - 1), #] == 1 &@((# - 1)^3 + 1) &] (* Michael De Vlieger, Dec 12 2015, after Farideh Firoozbakht at A001567 *)
PROG
(PARI) is(n) = {Mod(2, n)^n==2 & !isprime(n) & n>1};
for(n=1, 1e10, if(is((n-1)^3+1), print1(n, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Dec 12 2015
STATUS
approved