login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206443
Least n such that L(n)<-1 and L(n)>L(n-1), where L(k) means the least root of the polynomial p(k,x) defined at A206284, and a(1)=13.
2
13, 37, 145, 157, 181, 517, 565, 661, 2101, 2197, 2581, 2773, 8725, 8917, 10357, 10453, 10837, 35029, 35413, 41173, 41557, 43093, 43861
OFFSET
1,1
COMMENTS
A206074 gives an ordering {p(n,x)} of the polynomials with coefficients in {0,1}.
The least n for which p(n,x) has a root r less than -1 is 13, hence the choice of 13 as the initial term of A206443. (Specifically, p(13,x)=1+x^2+x^3, and r=-1.46557...) The next p(n,x) having a root less than -1 and >r is p(37,x)=1+x^2+x^5, with least root -1.1938...
MATHEMATICA
highs := {First /@ #, Most[FoldList[Plus, 1, Length /@ #]]} &[Split[Rest[FoldList[Max, -\[Infinity], #]]]] &
f[polyInX_] := {Min[#], Max[#]} &[
Map[#[[1]] &, DeleteCases[Map[{#, Head[#]} &, Chop[N[x /. Solve[polyInX == 0, x], 40]]], {_, Complex}]]]
t = Table[IntegerDigits[n, 2], {n, 1, 100000}];
b[n_] := Reverse[Array[x^(# - 1) &, {n + 1}]]
p[n_] := t[[n]].b[-1 + Length[t[[n]]]]
Table[p[n], {n, 1, 25}]
fitCriterion = Intersection[Map[#[[1]] &, DeleteCases[
Table[{n, Boole[IrreduciblePolynomialQ[p[n]]]}, {n, 1, #}], {_, 0}]], Map[#[[1]] &, DeleteCases[
Table[{n, CountRoots[#, {x, -Infinity, 0}] -
CountRoots[#, {x, -1, 0}] &[p[n]]}, {n, 1, #}],
{_, 0}]]] &[Length[t]];
polyNum = Map[{f[p[#]][[1]], #} &, fitCriterion];
up = Map[polyNum[[#]] &, highs[Map[#[[1]] &, polyNum]][[2]]]
down = Map[polyNum[[#]] &, highs[Map[#[[1]] &, -polyNum]][[2]]]
Table[up[[k, 2]], {k, 1, Length[up]}] (* A206443 *)
Table[down[[k, 2]], {k, 1, Length[down]}] (* A206444 *)
(* Peter J. C. Moses, Feb 06 2012 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Clark Kimberling, Feb 07 2012
STATUS
approved