login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265525
a(n) = largest base-10 palindrome m <= n such that every base-10 digit of m is <= the corresponding digit of n.
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0, 11, 22, 22, 22, 22, 22, 22, 22, 22, 0, 11, 22, 33, 33, 33, 33, 33, 33, 33, 0, 11, 22, 33, 44, 44, 44, 44, 44, 44, 0, 11, 22, 33, 44, 55, 55, 55, 55, 55, 0, 11, 22, 33, 44, 55, 66, 66, 66, 66, 0, 11, 22, 33, 44, 55, 66, 77, 77, 77, 0, 11, 22, 33
OFFSET
0,3
LINKS
MAPLE
ispal := proc(n) # test for base-b palindrome
local L, Ln, i;
global b;
L := convert(n, base, b);
Ln := nops(L);
for i to floor(1/2*Ln) do
if L[i] <> L[Ln + 1 - i] then return false end if
end do;
return true
end proc
# find max pal <= n and in base-b shadow of n, write in base 10
under10:=proc(n) global b;
local t1, t2, i, m, sw1, L2;
if n mod b = 0 then return(0); fi;
t1:=convert(n, base, b);
for m from n by -1 to 0 do
if ispal(m) then
t2:=convert(m, base, b);
L2:=nops(t2);
sw1:=1;
for i from 1 to L2 do
if t2[i] > t1[i] then sw1:=-1; break; fi;
od:
if sw1=1 then return(m); fi;
fi;
od;
end proc;
b:=10; [seq(under10(n), n=0..144)]; # Gives A265525
PROG
(Haskell)
a265525 n = a265525_list !! n
a265525_list = f a031298_tabf [[]] where
f (ds:dss) pss = y : f dss pss' where
y = foldr (\d v -> 10 * v + d) 0 ys
(ys:_) = dropWhile (\ps -> not $ and $ zipWith (<=) ps ds) pss'
pss' = if ds /= reverse ds then pss else ds : pss
-- Reinhard Zumkeller, Dec 11 2015
CROSSREFS
Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.
Sequence in context: A139281 A059707 A256754 * A355223 A348179 A349422
KEYWORD
nonn,base,look
AUTHOR
N. J. A. Sloane, Dec 09 2015
STATUS
approved