login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265526
Largest base-2 palindrome m <= n, written in base 2.
1
0, 1, 1, 11, 11, 101, 101, 111, 111, 1001, 1001, 1001, 1001, 1001, 1001, 1111, 1111, 10001, 10001, 10001, 10001, 10101, 10101, 10101, 10101, 10101, 10101, 11011, 11011, 11011, 11011, 11111, 11111, 100001, 100001, 100001, 100001, 100001, 100001, 100001, 100001, 100001, 100001, 100001, 100001, 101101, 101101, 101101
OFFSET
0,4
MAPLE
ispal:= proc(n) global b; # test for base-b palindrome
local L, Ln, i;
L:= convert(n, base, b);
Ln:= nops(L);
for i from 1 to floor(Ln/2) do
if L[i] <> L[Ln+1-i] then return(false); fi;
od:
return(true);
end proc;
# find max pal <= n, write in base 10
less10:=proc(n) global b;
local t1, t2, i, m, sw1, L2;
t1:=convert(n, base, b);
for m from n by -1 to 0 do
if ispal(m) then return(m); fi;
od;
end proc;
# find max pal <= n, write in base b
lessb:=proc(n) global b;
local t1, t2, i, m, mb, sw1, L2;
t1:=convert(n, base, b);
for m from n by -1 to 0 do
if ispal(m) then
t2:=convert(m, base, b);
L2:=nops(t2);
mb:=add(t2[i]*10^(i-1), i=1..L2); return(mb); fi;
od;
end proc;
b:=2;
[seq(less10(n), n=0..100)]; # A206913
[seq(lessb(n), n=0..100)]; # A265526
[seq(less10(2*n), n=0..100)]; # A265527
[seq(lessb(2*n), n=0..100)]; # A265528
b:=10;
[seq(less10(n), n=0..100)]; # A261423
CROSSREFS
Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.
Sequence in context: A243127 A088761 A215256 * A265559 A265543 A062128
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 09 2015
STATUS
approved