login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265120
Irregular array read by rows: Row n gives the number of elements in the multiplicative group mod n, (Z/nZ, *), that have order d for each divisor d of the exponent of the group.
0
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 3, 4, 1, 3, 4, 1, 1, 2, 4, 8, 1, 1, 2, 2, 1, 1, 2, 2, 6, 6, 1, 3, 4, 1, 3, 2, 6, 1, 1, 4, 4, 1, 1, 10, 10, 1, 7, 1, 1, 2, 4, 4, 8
OFFSET
2,8
COMMENTS
The exponent of the multiplicative group mod n is Carmichael lambda(n) given in A002322.
The row lengths are tau(lambda(n)) = A000005(A002322(n)) = A066800(n).
The invariant factor decomposition of (Z/nZ,*) is given in A258446.
The row sums are phi(n) = A000010(n).
It appears that column 2 is A155828.
EXAMPLE
{1}
{1, 1}
{1, 1}
{1, 1, 2}
{1, 1}
{1, 1, 2, 2}
{1, 3}
{1, 1, 2, 2}
{1, 1, 2}
{1, 1, 4, 4}
{1, 3}
{1, 1, 2, 2, 2, 4}
{1, 1, 2, 2}
{1, 3, 4}
{1, 3, 4}
{1, 1, 2, 4, 8}
{1, 1, 2, 2}
{1, 1, 2, 2, 6, 6}
{1, 3, 4}
{1, 3, 2, 6}
{1, 1, 4, 4}
{1, 1, 10, 10}
{1, 7},
{1, 1, 2, 4, 4, 8}
The row for n=21 reads: 1,3,2,6 because the multiplicative group mod 21, (Z/21*Z,*) is isomorphic to C_6 X C_2. The exponent of this group is 6. This group contains one element of order 1, three elements of order 2, two elements of order 3, and six elements of order 6.
MATHEMATICA
f[{p_, e_}] := {FactorInteger[p - 1][[All, 1]]^
FactorInteger[p - 1][[All, 2]],
FactorInteger[p^(e - 1)][[All, 1]]^
FactorInteger[p^(e - 1)][[All, 2]]};
fun[lst_] :=
Module[{int, num, res},
int = Sort /@ GatherBy[Join @@ (FactorInteger /@ lst), First];
num = Times @@ Power @@@ (Last@# & /@ int);
res = Flatten[Map[Power @@ # &, Most /@ int, {2}]];
{num, res}]
rec[lt_] :=
First@NestWhile[{Append[#[[1]], fun[#[[2]]][[1]]],
fun[#[[2]]][[2]]} &, {{}, lt}, Length[#[[2]]] > 0 &];
t[list_] :=
Table[Count[Map[PermutationOrder, GroupElements[AbelianGroup[list]]],
d], {d, Divisors[First[list]]}];
Map[t, Table[
If[! IntegerQ[n/8],
DeleteCases[rec[Flatten[Map[f, FactorInteger[n]]]], 1],
DeleteCases[
rec[Join[{2, 2^(FactorInteger[n][[1, 2]] - 2)},
Flatten[Map[f, Drop[FactorInteger[n], 1]]]]], 1]], {n, 2,
25}] /. {} -> {1}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Dec 01 2015
STATUS
approved