OFFSET
2,8
COMMENTS
EXAMPLE
{1}
{1, 1}
{1, 1}
{1, 1, 2}
{1, 1}
{1, 1, 2, 2}
{1, 3}
{1, 1, 2, 2}
{1, 1, 2}
{1, 1, 4, 4}
{1, 3}
{1, 1, 2, 2, 2, 4}
{1, 1, 2, 2}
{1, 3, 4}
{1, 3, 4}
{1, 1, 2, 4, 8}
{1, 1, 2, 2}
{1, 1, 2, 2, 6, 6}
{1, 3, 4}
{1, 3, 2, 6}
{1, 1, 4, 4}
{1, 1, 10, 10}
{1, 7},
{1, 1, 2, 4, 4, 8}
The row for n=21 reads: 1,3,2,6 because the multiplicative group mod 21, (Z/21*Z,*) is isomorphic to C_6 X C_2. The exponent of this group is 6. This group contains one element of order 1, three elements of order 2, two elements of order 3, and six elements of order 6.
MATHEMATICA
f[{p_, e_}] := {FactorInteger[p - 1][[All, 1]]^
FactorInteger[p - 1][[All, 2]],
FactorInteger[p^(e - 1)][[All, 1]]^
FactorInteger[p^(e - 1)][[All, 2]]};
fun[lst_] :=
Module[{int, num, res},
int = Sort /@ GatherBy[Join @@ (FactorInteger /@ lst), First];
num = Times @@ Power @@@ (Last@# & /@ int);
res = Flatten[Map[Power @@ # &, Most /@ int, {2}]];
{num, res}]
rec[lt_] :=
First@NestWhile[{Append[#[[1]], fun[#[[2]]][[1]]],
fun[#[[2]]][[2]]} &, {{}, lt}, Length[#[[2]]] > 0 &];
t[list_] :=
Table[Count[Map[PermutationOrder, GroupElements[AbelianGroup[list]]],
d], {d, Divisors[First[list]]}];
Map[t, Table[
If[! IntegerQ[n/8],
DeleteCases[rec[Flatten[Map[f, FactorInteger[n]]]], 1],
DeleteCases[
rec[Join[{2, 2^(FactorInteger[n][[1, 2]] - 2)},
Flatten[Map[f, Drop[FactorInteger[n], 1]]]]], 1]], {n, 2,
25}] /. {} -> {1}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Dec 01 2015
STATUS
approved