login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373269
T(n,k) is the number of different multiplicities in the k-th partition of n in graded reverse lexicographic ordering (A080577).
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 1
OFFSET
1,10
COMMENTS
The regular array for partitions of n of length k is A373270.
Row sums are A373271.
LINKS
EXAMPLE
Array begins:
1,
1,1,
1,1,1,
1,1,1,2,1,
1,1,1,2,2,2,1,
1,1,1,2,1,1,2,1,1,2,1,
1,1,1,2,1,1,2,2,2,2,2,2,2,2,1
...
T(10,34) is the first term with value 3. It corresponds to partition 3+2+2+1+1+1 of 10, which has three different multiplicities.
MATHEMATICA
Flatten@Table[
Map[Length[Union[Length /@ Split[#]]] &, IntegerPartitions[n]], {n,
1, 20}]
CROSSREFS
Sequence in context: A265120 A329621 A124961 * A008967 A345971 A211355
KEYWORD
nonn,tabf
AUTHOR
Olivier Gérard, May 29 2024
STATUS
approved