login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263931 a(n) = binomial(2*n, n) / Product(p prime | n < p <= 2*n). 2
1, 1, 2, 4, 2, 36, 12, 24, 90, 20, 4, 168, 28, 1400, 5400, 720, 90, 5940, 23100, 46200, 180180, 17160, 1560, 140400, 11700, 45864, 179928, 13328, 52360, 5969040, 397936, 795872, 3133746, 12345060, 726180, 2863224, 159068, 318136, 1255800, 4958800, 247940 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The highest exponent in the prime factorization of a(n) is A263922(n), n>=2.

a(n) is even for n>=2.

LINKS

David A. Corneth, Table of n, a(n) for n = 0..5806 (terms < 10^1000)

FORMULA

a(n) = A000984(n)/A261130(n).

MAPLE

a := n -> binomial(2*n, n)/convert(select(isprime, {$n+1..2*n}), `*`):

seq(a(n), n=0..40);

PROG

(PARI) a(n) = { my(res = 1); forprime(p = 2, n, res*= p^(val(2*n, p) - 2*val(n, p))); forprime(p = n + 1, 2*n, res*= p^(val(2*n, p) - 2*val(n, p) - 1)); res } val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Apr 03 2021

CROSSREFS

Cf. A000984, A261130, A263922.

Sequence in context: A295640 A210457 A006496 * A259685 A301460 A130172

Adjacent sequences:  A263928 A263929 A263930 * A263932 A263933 A263934

KEYWORD

nonn

AUTHOR

Peter Luschny, Oct 31 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 04:41 EDT 2021. Contains 345125 sequences. (Running on oeis4.)