|
|
A006496
|
|
Imaginary part of (1+2i)^n.
(Formerly M0933)
|
|
9
|
|
|
0, 2, 4, -2, -24, -38, 44, 278, 336, -718, -3116, -2642, 10296, 33802, 16124, -136762, -354144, -24478, 1721764, 3565918, -1476984, -20783558, -34182196, 35553398, 242017776, 306268562, -597551756, -2726446322, -2465133864, 8701963882, 29729597084, 15949374758
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The absolute values of these numbers are the even numbers x such that x^2 + y^2 = 5^n with x and y coprime. See A098122. - T. D. Noe, Apr 14 2011
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2*a(n-1) - 5*a(n-2); a(0)=0, a(1)=2. - T. D. Noe, Nov 09 2006
a(n) = - [M^n]_1,2, where M = [1, -2; 2, 1]. - Simone Severini, Apr 25 2007
O.g.f.: 2*x/(1 - 2*x + 5*x^2).
a(n) = (1/2)*i*(1-2*i)^n - (1/2)*i*(1+2*i)^n, with n>=0 and i=sqrt(-1). - Paolo P. Lava, Oct 03 2008
|
|
MATHEMATICA
|
|
|
PROG
|
(Magma) I:=[0, 2]; [n le 2 select I[n] else 2*Self(n-1)-5*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 21 2011
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|