login
A263771
Triangle read by rows: T(n,k) (n>=0, k>=0) is the number of permutations of n and k occurrences of the pattern 312.
15
1, 1, 2, 5, 1, 14, 5, 4, 1, 42, 21, 23, 14, 12, 5, 3, 132, 84, 107, 82, 96, 55, 64, 37, 29, 22, 10, 0, 2, 429, 330, 464, 410, 526, 394, 475, 365, 360, 298, 281, 175, 206, 126, 93, 55, 23, 14, 13, 1, 2, 1430, 1287, 1950, 1918, 2593, 2225, 2858, 2489, 2682, 2401
OFFSET
0,3
COMMENTS
Row sums give A000142.
First column gives A000108.
Also the number of permutations of n and k occurrences of either of the fixed pattern 132, 213, 231 (these are all connected by reverses and inverses).
Columns k=1-5 give: A002054(n-2) for n>=3, A082970, A082971, A138162, A138163. - Alois P. Heinz, Oct 27 2015
FORMULA
Sum_{k>0} k * T(n,k) = A001810(n). - Alois P. Heinz, Oct 27 2015
EXAMPLE
Triangle begins:
1;
1;
2;
5, 1;
14, 5, 4, 1;
42, 21, 23, 14, 12, 5, 3;
132, 84, 107, 82, 96, 55, 64, 37, 29, 22, 10, 0, 2;
...
MATHEMATICA
Join@@Array[Table[Length@Select[Permutations@Range@#, Length@Select[Subsets[#, {3}], Ordering@Ordering@#=={3, 1, 2}&]==k&], {k, 0, Binomial[#+1, 3]}]//.{a__, 0}:>{a}&, 8, 0] (* Giorgos Kalogeropoulos, Mar 26 2021 *)
KEYWORD
nonn,tabf
AUTHOR
Christian Stump, Oct 26 2015
EXTENSIONS
More terms from Alois P. Heinz, Oct 26 2015
STATUS
approved