login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082970
Number of permutations of length n containing 2 occurrences of 132.
5
4, 23, 107, 464, 1950, 8063, 33033, 134576, 546312, 2212550, 8946454, 36134656, 145831270, 588199815, 2371435125, 9557736480, 38511326040, 155143873170, 624899673690, 2516678580000, 10134353299980, 40805797511622
OFFSET
4,1
LINKS
T. Mansour and A. Vainshtein, Counting occurrences of 132 in a permutation, arXiv:math/0105073 [math.CO], 2001.
FORMULA
a(n) = C(2*n-6,n-2)*(n^3+17*n^2-80*n+80)/(2n(n-1)).
MATHEMATICA
Table[Binomial[2n-6, n-2] (n^3+17n^2-80n+80)/(2n(n-1)), {n, 4, 30}] (* Harvey P. Dale, Dec 25 2018 *)
PROG
(PARI) a(n)=binomial(2*n-6, n-2)*(n^3+17*n^2-80*n+80)/2/n/(n-1)
CROSSREFS
Column k=2 of A263771.
Sequence in context: A038381 A241777 A321614 * A197868 A017973 A306669
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 27 2003
STATUS
approved