login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038381 Number of perifusenes with one internal vertex and symmetry point group C_s. 1
0, 0, 0, 0, 1, 4, 23, 103, 477, 2132, 9647, 43549, 197757, 901162, 4125636, 18962997, 87508095, 405285316, 1883445191, 8780327545, 41052409755, 192461538607, 904573028990, 4261485478861, 20119936933822, 95186854957397 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

REFERENCES

S. J. Cyvin et al., Number of perifusenes with one internal vertex, Rev. Roumaine Chem., 38 (1993), 65-77.

LINKS

Table of n, a(n) for n=0..25.

S. J. Cyvin, F. Zhang and J. Brunvoll, Enumeration of perifusenes with one internal vertex: A complete mathematical solution, J. Math. Chem., 11 (1992), 283-292.

FORMULA

G.f.: (1-11x+21x^2-9x^3)/2-(4-18x+17x^2)*(1-x)^(1/2)*(1-5x)^(1/2)/6+x(1-x^2)^(1/2)*(1-5x^2)^(1/2)/2+(1-x^3)^(1/2)*(1-5x^3)^(1/2)/6. - Emeric Deutsch, May 14 2004

a(n) ~ 9 * 5^(n - 5/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 14 2021

MATHEMATICA

CoefficientList[Series[(1 - 11*x + 21*x^2 - 9*x^3)/2 - Sqrt[1 - 5*x]*Sqrt[1 - x]*(4 - 18*x + 17*x^2)/6 + x*Sqrt[1 - 5*x^2]*Sqrt[1 - x^2]/2 + Sqrt[1 - 5*x^3] * Sqrt[1 - x^3]/6, {x, 0, 30}], x] (* Vaclav Kotesovec, Jan 14 2021 *)

CROSSREFS

Sequence in context: A197854 A317599 A122738 * A241777 A321614 A082970

Adjacent sequences:  A038378 A038379 A038380 * A038382 A038383 A038384

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Emeric Deutsch, May 14 2004

Name clarified by Sean A. Irvine, Jan 13 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 21:30 EST 2021. Contains 349415 sequences. (Running on oeis4.)