login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118964 Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n that have k double rises above the x-axis (n>=1,k>=0). (A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1); a double rise in a Grand Dyck path is an occurrence of uu in the path.) 2
2, 5, 1, 14, 5, 1, 42, 19, 8, 1, 132, 67, 40, 12, 1, 429, 232, 166, 79, 17, 1, 1430, 804, 634, 395, 145, 23, 1, 4862, 2806, 2335, 1708, 879, 249, 30, 1, 16796, 9878, 8480, 6824, 4376, 1823, 404, 38, 1, 58786, 35072, 30691, 26137, 19334, 10521, 3542, 625, 47, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row sums are the central binomial coefficients (A000984). T(n,0)=A000108(n+1) (the Catalan numbers). T(n,1)=A114277(n-2). Sum(k*T(n,k),k>=0)=A000531(n-1). For all double rises (above, below and on the x-axis), see A118963.

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

FORMULA

G.f.: G(t,z)=(1+r)/[1-z(1+r)C]-1, where r=r(t,z) is the Narayana function, defined by (1+r)(1+tr)z=r, r(t,0)=0 and C=C(z)=[1-sqrt(1-4z)]/(2z) is the Catalan function. More generally, the g.f. H=H(t,s,u,z), where t,s and u mark double rises above, below and on the x-axis, respectively, is H=[1+r(s,z)]/[1-z(1+tr(t,z))(1+ur(s,z))].

EXAMPLE

T(3,1) = 5 because we have u/ududd,u/uddud,udu/udd,duu/udd and u/udddu (the double rises above the x-axis are indicated by /.

Triangle starts:

2;

5,   1;

14,  5,  1;

42,  19, 8,  1;

132, 67, 40, 12, 1;

MAPLE

C:=(1-sqrt(1-4*z))/2/z: r:=(1-z-t*z-sqrt(z^2*t^2-2*z^2*t-2*z*t+z^2-2*z+1))/2/t/z: G:=(1+r)/(1-z*C*(1+r))-1: Gser:=simplify(series(G, z=0, 15)): for n from 1 to 11 do P[n]:=coeff(Gser, z, n) od: for n from 1 to 11 do seq(coeff(P[n], t, j), j=0..n-1) od; # yields sequence in triangular form

# second Maple program:

b:= proc(x, y, t) option remember; `if`(abs(y)>x, 0,

      `if`(x=0, 1, expand(`if`(t=2, z, 1)*b(x-1, y+1,

      `if`(y>=0, min(t+1, 2), 1)) +b(x-1, y-1, 1))))

    end:

T:= n-> (p-> seq(coeff(p, z, i), i=0..n-1))(b(2*n, 0, 1)):

seq(T(n), n=1..12);  # Alois P. Heinz, Jun 16 2014

MATHEMATICA

b[x_, y_, t_] := b[x, y, t] = If[Abs[y] > x, 0, If[x == 0, 1, Expand[If[t == 2, z, 1]*b[x-1, y+1, If[y >= 0, Min[t+1, 2], 1]] + b[x-1, y-1, 1]]]]; T[n_] := Function[ {p}, Table[Coefficient[p, z, i], {i, 0, n-1}]][b[2*n, 0, 1]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-Fran├žois Alcover, Feb 19 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A000984, A000108, A114277, A000531, A118963.

Sequence in context: A263487 A101920 A114494 * A263771 A073187 A138159

Adjacent sequences:  A118961 A118962 A118963 * A118965 A118966 A118967

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, May 07 2006

EXTENSIONS

Keyword tabf changed to tabl by Michel Marcus, Apr 07 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 13:32 EDT 2021. Contains 348049 sequences. (Running on oeis4.)