login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263773 Expansion of b(-q)^2 in powers of q where b() is a cubic AGM theta function. 2
1, 6, 9, -12, -42, -18, 36, 48, 45, -12, -108, -36, 84, 84, 72, -72, -186, -54, 36, 120, 126, -96, -216, -72, 180, 186, 126, -12, -336, -90, 216, 192, 189, -144, -324, -144, 84, 228, 180, -168, -540, -126, 288, 264, 252, -72, -432, -144, 372, 342, 279, -216 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of f(q)^6 / f(q^3)^2 in powers of q where f() is a Ramanujan theta function.

Expansion of (eta(q^2)^9 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)^3 * eta(q^6)^3))^2 in powers of q.

Euler transform of period 12 sequence [ 6, -12, 4, -6, 6, -8, 6, -6, 4, -12, 6, -4, ...].

G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 972 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134079.

G.f.: Product_{k>0} (1 - (-x)^k)^6 / (1 - (-x)^(3*k))^2.

a(2*n + 1) = 6 * A252651(n). a(3*n + 2) = 9 * A134079(n).

Convolution square of A226535.

EXAMPLE

G.f. = 1 + 6*x + 9*x^2 - 12*x^3 - 42*x^4 - 18*x^5 + 36*x^6 + 48*x^7 + 45*x^8 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ QPochhammer[ -q]^6 / QPochhammer[ -q^3]^2, {q, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^9 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)^3))^2, n))};

CROSSREFS

Cf. A134079, A226535, A262651.

Sequence in context: A315962 A118521 A095213 * A242874 A284800 A242295

Adjacent sequences:  A263770 A263771 A263772 * A263774 A263775 A263776

KEYWORD

sign

AUTHOR

Michael Somos, Oct 27 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 09:29 EDT 2019. Contains 328056 sequences. (Running on oeis4.)