login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263609 Base-4 numbers whose square is a palindrome in base 4. 0
0, 1, 11, 101, 111, 1001, 1013, 1103, 10001, 10101, 10121, 10331, 100001, 100133, 1000001, 1001001, 1001201, 1010301, 1100211, 1100323, 1101211, 10000001, 10001333, 10013201, 10031113, 100000001, 100010001, 100012001, 100103001, 100301113, 100332101, 101002101, 103231203, 110002011 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
G. J. Simmons, On palindromic squares of non-palindromic numbers, J. Rec. Math., 5 (No. 1, 1972), 11-19. [Annotated scanned copy]
EXAMPLE
From Mattew Bondar, Mar 12 2021: (Start)
111_4 = 21_10, 21^2 = 441, 441_10 = 12321_4 (palindrome).
1013_4 = 71_10, 71^2 = 5041, 5041_10 = 1032301_4 (palindrome). (End)
MATHEMATICA
FromDigits /@ IntegerDigits[Select[Range[0, 2^17], PalindromeQ@ IntegerDigits[#^2, 4] &], 4] (* Michael De Vlieger, Mar 13 2021 *)
PROG
(Python)
def decimal_to_quaternary(n):
if n == 0:
return '0'
b = ''
while n > 0:
b = str(n % 4) + b
n = n // 4
return b
x = 0
counter = 0
while True:
y = decimal_to_quaternary(x ** 2)
if y == y[::-1]:
print(int(decimal_to_quaternary(x)))
counter += 1
x += 1 # Mattew Bondar, Mar 10 2021
CROSSREFS
Sequence in context: A265528 A099821 A193415 * A333415 A264406 A057148
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Oct 22 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 18:02 EDT 2024. Contains 375910 sequences. (Running on oeis4.)