login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263609
Base-4 numbers whose square is a palindrome in base 4.
0
0, 1, 11, 101, 111, 1001, 1013, 1103, 10001, 10101, 10121, 10331, 100001, 100133, 1000001, 1001001, 1001201, 1010301, 1100211, 1100323, 1101211, 10000001, 10001333, 10013201, 10031113, 100000001, 100010001, 100012001, 100103001, 100301113, 100332101, 101002101, 103231203, 110002011
OFFSET
1,3
LINKS
G. J. Simmons, On palindromic squares of non-palindromic numbers, J. Rec. Math., 5 (No. 1, 1972), 11-19. [Annotated scanned copy]
EXAMPLE
From Mattew Bondar, Mar 12 2021: (Start)
111_4 = 21_10, 21^2 = 441, 441_10 = 12321_4 (palindrome).
1013_4 = 71_10, 71^2 = 5041, 5041_10 = 1032301_4 (palindrome). (End)
MATHEMATICA
FromDigits /@ IntegerDigits[Select[Range[0, 2^17], PalindromeQ@ IntegerDigits[#^2, 4] &], 4] (* Michael De Vlieger, Mar 13 2021 *)
PROG
(Python)
def decimal_to_quaternary(n):
if n == 0:
return '0'
b = ''
while n > 0:
b = str(n % 4) + b
n = n // 4
return b
x = 0
counter = 0
while True:
y = decimal_to_quaternary(x ** 2)
if y == y[::-1]:
print(int(decimal_to_quaternary(x)))
counter += 1
x += 1 # Mattew Bondar, Mar 10 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Oct 22 2015
STATUS
approved