|
|
A263609
|
|
Base-4 numbers whose square is a palindrome in base 4.
|
|
0
|
|
|
0, 1, 11, 101, 111, 1001, 1013, 1103, 10001, 10101, 10121, 10331, 100001, 100133, 1000001, 1001001, 1001201, 1010301, 1100211, 1100323, 1101211, 10000001, 10001333, 10013201, 10031113, 100000001, 100010001, 100012001, 100103001, 100301113, 100332101, 101002101, 103231203, 110002011
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
EXAMPLE
|
111_4 = 21_10, 21^2 = 441, 441_10 = 12321_4 (palindrome).
1013_4 = 71_10, 71^2 = 5041, 5041_10 = 1032301_4 (palindrome). (End)
|
|
MATHEMATICA
|
FromDigits /@ IntegerDigits[Select[Range[0, 2^17], PalindromeQ@ IntegerDigits[#^2, 4] &], 4] (* Michael De Vlieger, Mar 13 2021 *)
|
|
PROG
|
(Python)
def decimal_to_quaternary(n):
if n == 0:
return '0'
b = ''
while n > 0:
b = str(n % 4) + b
n = n // 4
return b
x = 0
counter = 0
while True:
y = decimal_to_quaternary(x ** 2)
if y == y[::-1]:
print(int(decimal_to_quaternary(x)))
counter += 1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|