login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029987
Squares which are palindromes in base 4.
14
0, 1, 25, 289, 441, 4225, 5041, 6889, 66049, 74529, 78961, 100489, 1050625, 1113025, 16785409, 17313921, 17581249, 19368801, 26594649, 26822041, 27258841, 268468225, 272613121, 284428225, 297183121, 4295098369
OFFSET
1,3
LINKS
Patrick De Geest, Palindromic Squares
EXAMPLE
5^2 = 25 in base 4 is 121, which is a palindrome, hence 25 is in the sequence.
6^2 = 36 in base 4 is 210, which is not a palindrome, so 36 is not in the sequence.
MATHEMATICA
palindromicQ[n_, b_:10] := TrueQ[IntegerDigits[n, b] == Reverse[IntegerDigits[n, b]]]; Select[Range[1000]^2, palindromicQ[#, 4] &] (* Alonso del Arte, Mar 04 2017 *)
Select[Range[0, 70000]^2, IntegerDigits[#, 4]==Reverse[IntegerDigits[#, 4]]&] (* Harvey P. Dale, May 07 2022 *)
PROG
(PARI) lista(nn) = for (n=0, nn, d = digits(n^2, 4); if (Vecrev(d) == d, print1(n^2, ", "))); \\ Michel Marcus, Mar 05 2017
CROSSREFS
Cf. A029986.
Sequence in context: A265967 A225873 A351925 * A017582 A335598 A210430
KEYWORD
nonn,base
STATUS
approved