login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263402
Define Z(1) = {1}, and Z(n+1) = Z(n) (+) { x+y, with x and y in Z(n) } for any n>0 (where (+) stands for the symmetric difference of two sets). Then a(n) gives the number of elements in Z(n).
1
1, 2, 3, 7, 10, 22, 42, 87, 170, 342, 686, 1365, 2727, 5468, 10919, 21857, 43680, 87389, 174756, 349539, 699039, 1398115, 2796191, 5592422, 11184795, 22369639, 44739229, 89478503, 178956950, 357913967, 715827858, 1431655793, 2863311503, 5726623097, 11453246088
OFFSET
1,2
COMMENTS
a(n) can also be interpreted as the number of ON cells at the n-th stage of the following automaton:
- At first stage, we have only one ON cell at position 1,
- An ON cell appears at position x+y if the cells at positions x and y are ON,
- An ON cell dies at position x+y if the cells at positions x and y are ON.
a(n) <= 2^(n-1) for any n>0.
FORMULA
a(n) = A000120(z(n)) for any n>0
where z(n) is a binary encoding of Z(n), defined as follows:
- z(1) = 2^1,
- z(n+1) = z(n) XOR A067398(z(n)) for any n>0 (where XOR stands for the binary XOR operator).
EXAMPLE
Z(1) = {1};
Z(2) = {1} (+) {2} = {1,2};
Z(3) = {1,2} (+) {2,3,4} = {1,3,4};
Z(4) = {1,3,4} (+) {2,4,5,6,7,8} = {1,2,3,5,6,7,8};
Hence: a(1) = 1, a(2) = 2, a(3) = 3 and a(4) = 7.
PROG
(Perl) See Links section.
(PARI) lista(nn) = {zprec = Set([1]); print1(#zprec, ", "); for (n=2, nn, zs = setbinop((x, y)->x+y, zprec); zn = setminus(setunion(zprec, zs), setintersect(zprec, zs)); print1(#zn, ", "); zprec = zn; ); } \\ Michel Marcus, Oct 20 2015
CROSSREFS
Cf. A067398.
Sequence in context: A318406 A365967 A079380 * A047082 A062113 A346799
KEYWORD
nonn
AUTHOR
Paul Tek, Oct 17 2015
STATUS
approved