login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263403
Carmichael numbers k such that the odd part of k-1 is squarefree.
1
561, 1105, 2465, 2821, 62745, 75361, 278545, 530881, 3224065, 3581761, 4335241, 6049681, 7519441, 8355841, 9582145, 9890881, 10837321, 13696033, 17098369, 19384289, 22665505, 23382529, 26932081, 34657141, 36121345, 37167361, 40280065, 41471521, 43286881
OFFSET
1,1
COMMENTS
Are there Carmichael numbers k such that the odd part of k-1 is a Carmichael number?
LINKS
EXAMPLE
a(1) = 561 because 561 is the first Carmichael number and the odd part of 560 is 35, which is squarefree.
MATHEMATICA
lim = 10^7; f[n_] := NestWhile[#/2 &, n, EvenQ]; t = Cases[Range[1, lim, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Select[t, SquareFreeQ@ f[# - 1] &] (* Michael De Vlieger, Oct 19 2015, after Artur Jasinski at A002997 *)
PROG
(PARI) t(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1;
isC(n)=n%2 && !isprime(n) && t(n) && n>1;
is(n)=isC(n) && issquarefree((n-1) >> valuation((n-1), 2));
for(n=1, 1e10, if( is(n), print1(n", "))); \\ Altug Alkan, Oct 17 2015; edited by Michel Marcus, Jun 25 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Oct 17 2015
EXTENSIONS
More terms from Altug Alkan, Oct 17 2015
STATUS
approved