login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339869
Carmichael numbers k for which A053575(k) [the odd part of phi] divides k-1.
11
561, 1105, 2465, 6601, 8911, 10585, 46657, 62745, 162401, 410041, 449065, 5148001, 5632705, 6313681, 6840001, 7207201, 11119105, 11921001, 19683001, 21584305, 26719701, 41298985, 55462177, 64774081, 67371265, 79411201, 83966401, 87318001, 99861985, 100427041, 172290241, 189941761, 484662529, 790623289, 809883361
OFFSET
1,1
COMMENTS
Lehmer conjectured that the equation k * phi(n) = n - 1 (with k integer) has no solutions for any composite n (i.e., when k > 1). If this sequence has no common terms with A339818, then the conjecture certainly holds.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1150 (terms below 10^22 calculated using data from Claude Goutier)
D. H. Lehmer, On Euler's totient function, Bulletin of the American Mathematical Society, 38 (1932), 745-751.
MATHEMATICA
carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {_, _}][[;; , 2]]; oddPart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := Divisible[n - 1, oddPart[EulerPhi[n]]]; Select[carmichaels, q] (* Amiram Eldar, Dec 26 2020 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A002322(n) = lcm(znstar(n)[2]);
isA339869(n) = ((n>1)&&!isprime(n)&&(!((n-1)%A002322(n)))&&!((n-1)%A000265(eulerphi(n))));
CROSSREFS
Intersection of A002997 and A339880.
Complement of A340092 in A002997.
Cf. also A339818, A339878, A339909.
Sequence in context: A135720 A263403 A083733 * A375875 A214428 A262043
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 22 2020
STATUS
approved