Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Apr 22 2024 14:28:01
%S 561,1105,2465,6601,8911,10585,46657,62745,162401,410041,449065,
%T 5148001,5632705,6313681,6840001,7207201,11119105,11921001,19683001,
%U 21584305,26719701,41298985,55462177,64774081,67371265,79411201,83966401,87318001,99861985,100427041,172290241,189941761,484662529,790623289,809883361
%N Carmichael numbers k for which A053575(k) [the odd part of phi] divides k-1.
%C Lehmer conjectured that the equation k * phi(n) = n - 1 (with k integer) has no solutions for any composite n (i.e., when k > 1). If this sequence has no common terms with A339818, then the conjecture certainly holds.
%H Amiram Eldar, <a href="/A339869/b339869.txt">Table of n, a(n) for n = 1..1150</a> (terms below 10^22 calculated using data from Claude Goutier)
%H Claude Goutier, <a href="http://www-labs.iro.umontreal.ca/~goutier/OEIS/A055553/">Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22</a>.
%H D. H. Lehmer, <a href="http://dx.doi.org/10.1090/s0002-9904-1932-05521-5">On Euler's totient function</a>, Bulletin of the American Mathematical Society, 38 (1932), 745-751.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lehmer's_totient_problem">Lehmer's totient problem</a>.
%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.
%t carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {_, _}][[;; , 2]]; oddPart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := Divisible[n - 1, oddPart[EulerPhi[n]]]; Select[carmichaels, q] (* _Amiram Eldar_, Dec 26 2020 *)
%o (PARI)
%o A000265(n) = (n>>valuation(n, 2));
%o A002322(n) = lcm(znstar(n)[2]);
%o isA339869(n) = ((n>1)&&!isprime(n)&&(!((n-1)%A002322(n)))&&!((n-1)%A000265(eulerphi(n))));
%Y Intersection of A002997 and A339880.
%Y Complement of A340092 in A002997.
%Y Cf. A000010, A000265, A002322, A053575.
%Y Cf. also A339818, A339878, A339909.
%K nonn
%O 1,1
%A _Antti Karttunen_, Dec 22 2020