login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365967
a(2*n) = A030186(n), a(2*n+1) = A033505(n).
0
1, 1, 2, 3, 7, 10, 22, 32, 71, 103, 228, 331, 733, 1064, 2356, 3420, 7573, 10993, 24342, 35335, 78243, 113578, 251498, 365076, 808395, 1173471, 2598440, 3771911, 8352217, 12124128, 26846696, 38970824, 86293865, 125264689, 277376074, 402640763, 891575391
OFFSET
0,3
COMMENTS
a(n) is the number of ways to tile a double-height board of n cells with squares and dominos. For example, here is the board for n=9:
_______
|_|_|_|_|_
|_|_|_|_|_|
and here is one of the a(9)=103 possible tilings of this board:
_______
| |_|_|_|_
|_|_|___|_|.
FORMULA
a(n) = 3*a(n-2) + a(n-4) - a(n-6).
a(2*n) = a(2*n-1) + a(2*n-2) + a(2*n-3) + a(2*n-4).
a(2*n+1) = a(2*n) + a(2*n-1).
G.f.: (1+x-x^2)/(1-3*x^2-x^4+x^6).
MATHEMATICA
a[0] = 1; a[1] = 1; a[2] = 2; a[3] = 3;
a[n_] := a[n] = If[EvenQ[n], a[n-1] + a[n-2] + a[n-3] + a[n-4], a[n-1] + a[n-2]];
Table[a[n], {n, 0, 30}]
CROSSREFS
Sequence in context: A306008 A291241 A318406 * A079380 A263402 A047082
KEYWORD
nonn,easy
AUTHOR
Greg Dresden, Sep 23 2023
STATUS
approved