OFFSET
0,3
COMMENTS
a(n) is the number of ways to tile a double-height board of n cells with squares and dominos. For example, here is the board for n=9:
_______
|_|_|_|_|_
|_|_|_|_|_|
and here is one of the a(9)=103 possible tilings of this board:
_______
| |_|_|_|_
|_|_|___|_|.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,3,0,1,0,-1).
FORMULA
a(n) = 3*a(n-2) + a(n-4) - a(n-6).
a(2*n) = a(2*n-1) + a(2*n-2) + a(2*n-3) + a(2*n-4).
a(2*n+1) = a(2*n) + a(2*n-1).
G.f.: (1+x-x^2)/(1-3*x^2-x^4+x^6).
MATHEMATICA
a[0] = 1; a[1] = 1; a[2] = 2; a[3] = 3;
a[n_] := a[n] = If[EvenQ[n], a[n-1] + a[n-2] + a[n-3] + a[n-4], a[n-1] + a[n-2]];
Table[a[n], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Greg Dresden, Sep 23 2023
STATUS
approved