%I #11 Sep 24 2023 05:55:34
%S 1,1,2,3,7,10,22,32,71,103,228,331,733,1064,2356,3420,7573,10993,
%T 24342,35335,78243,113578,251498,365076,808395,1173471,2598440,
%U 3771911,8352217,12124128,26846696,38970824,86293865,125264689,277376074,402640763,891575391
%N a(2*n) = A030186(n), a(2*n+1) = A033505(n).
%C a(n) is the number of ways to tile a double-height board of n cells with squares and dominos. For example, here is the board for n=9:
%C _______
%C |_|_|_|_|_
%C |_|_|_|_|_|
%C and here is one of the a(9)=103 possible tilings of this board:
%C _______
%C | |_|_|_|_
%C |_|_|___|_|.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,1,0,-1).
%F a(n) = 3*a(n-2) + a(n-4) - a(n-6).
%F a(2*n) = a(2*n-1) + a(2*n-2) + a(2*n-3) + a(2*n-4).
%F a(2*n+1) = a(2*n) + a(2*n-1).
%F G.f.: (1+x-x^2)/(1-3*x^2-x^4+x^6).
%t a[0] = 1; a[1] = 1; a[2] = 2; a[3] = 3;
%t a[n_] := a[n] = If[EvenQ[n], a[n-1] + a[n-2] + a[n-3] + a[n-4], a[n-1] + a[n-2]];
%t Table[a[n],{n,0,30}]
%Y Cf. A030186, A033505.
%K nonn,easy
%O 0,3
%A _Greg Dresden_, Sep 23 2023