login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263361
Expansion of Product_{k>=1} 1/(1-x^(k+5))^k.
8
1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 30, 40, 58, 76, 106, 140, 191, 252, 344, 454, 613, 814, 1091, 1442, 1926, 2538, 3368, 4432, 5852, 7678, 10107, 13222, 17337, 22636, 29582, 38518, 50195, 65198, 84712, 109784, 142254, 183924, 237742, 306688
OFFSET
0,8
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} x^(6*k)/(k*(1-x^k)^2)).
a(n) ~ exp(1/12 - 25*Pi^4/(432*Zeta(3)) - 5*Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * n^(125/36) * Pi^2 / (576 * A * 2^(35/36) * sqrt(3) * Zeta(3)^(143/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
max(0, d-5), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Oct 16 2015
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[1/(1-x^(k+5))^k, {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 60; CoefficientList[Series[E^Sum[x^(6*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 16 2015
STATUS
approved