login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} 1/(1-x^(k+5))^k.
8

%I #14 Nov 16 2024 16:10:35

%S 1,0,0,0,0,0,1,2,3,4,5,6,8,10,15,20,30,40,58,76,106,140,191,252,344,

%T 454,613,814,1091,1442,1926,2538,3368,4432,5852,7678,10107,13222,

%U 17337,22636,29582,38518,50195,65198,84712,109784,142254,183924,237742,306688

%N Expansion of Product_{k>=1} 1/(1-x^(k+5))^k.

%H Vaclav Kotesovec, <a href="/A263361/b263361.txt">Table of n, a(n) for n = 0..5000</a>

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015

%F G.f.: exp(Sum_{k>=1} x^(6*k)/(k*(1-x^k)^2)).

%F a(n) ~ exp(1/12 - 25*Pi^4/(432*Zeta(3)) - 5*Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * n^(125/36) * Pi^2 / (576 * A * 2^(35/36) * sqrt(3) * Zeta(3)^(143/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

%p with(numtheory):

%p a:= proc(n) option remember; `if`(n=0, 1, add(add(d*

%p max(0, d-5), d=divisors(j))*a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..50); # _Alois P. Heinz_, Oct 16 2015

%t nmax = 60; CoefficientList[Series[Product[1/(1-x^(k+5))^k, {k, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 60; CoefficientList[Series[E^Sum[x^(6*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A000219, A052847, A263358, A263359, A263360, A263362, A263363, A263364.

%K nonn

%O 0,8

%A _Vaclav Kotesovec_, Oct 16 2015