login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105181
Numbers k such that 2^(2*(k+1)) + 2^k - 1 is prime.
1
1, 2, 3, 4, 5, 6, 8, 10, 14, 22, 38, 42, 71, 118, 128, 159, 179, 214, 484, 951, 1148, 1162, 1427, 1532, 1692, 1861, 2261, 3760, 4575, 6974, 7295, 8367, 8463, 8600, 14878, 16165, 24327, 24482, 34600, 35067
OFFSET
1,2
EXAMPLE
2^4 + 2^1 + 1 = 19 is prime so a(1)=1.
2^6 + 2^2 + 1 = 67 is prime so a(2)=2.
2^8 + 2^3 + 1 = 263 is prime so a(3)=3.
MATHEMATICA
a[n_]:=2^(2*(n+1))+2^n-1; lst={}; Do[If[PrimeQ[a[n]], AppendTo[lst, n]], {n, 0, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009 *)
PROG
(PARI) is(n)=ispseudoprime(2^(2*(n+1))+2^n-1) \\ Charles R Greathouse IV, Jun 13 2017
(Magma) [k: k in [0..200] | IsPrime(2^(2*(k+1))+2^k-1)]; // Jinyuan Wang, Mar 20 2020
CROSSREFS
Cf. A105182.
Sequence in context: A179053 A218949 A129976 * A263361 A320020 A229034
KEYWORD
nonn,more
AUTHOR
Pierre CAMI, Apr 11 2005
EXTENSIONS
a(31)-a(36) from Ryan Propper, Jan 31 2008
a(37)-a(40) from Michael S. Branicky, Oct 12 2024
STATUS
approved