login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263363 Expansion of Product_{k>=1} 1/(1-x^(k+7))^k. 8
1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 17, 22, 32, 42, 59, 76, 103, 130, 171, 216, 280, 354, 460, 584, 757, 968, 1249, 1596, 2056, 2618, 3354, 4266, 5441, 6900, 8778, 11108, 14094, 17814, 22546, 28450, 35946, 45280, 57088, 71806, 90347 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..5000

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015

FORMULA

G.f.: exp(Sum_{k>=1} x^(8*k)/(k*(1-x^k)^2).

a(n) ~ exp(1/12 - 49*Pi^4/(432*Zeta(3)) - 7*Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * n^(269/36) * Pi^3 / (398131200 * A * 2^(35/36) * sqrt(3) * Zeta(3)^(287/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

MAPLE

with(numtheory):

a:= proc(n) option remember; `if`(n=0, 1, add(add(d*

      max(0, d-7), d=divisors(j))*a(n-j), j=1..n)/n)

    end:

seq(a(n), n=0..60);  # Alois P. Heinz, Oct 16 2015

MATHEMATICA

nmax = 60; CoefficientList[Series[Product[1/(1-x^(k+7))^k, {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 60; CoefficientList[Series[E^Sum[x^(8*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A000219, A052847, A263358, A263359, A263360, A263361, A263362, A263364.

Sequence in context: A278619 A173925 A320319 * A061920 A062010 A071218

Adjacent sequences:  A263360 A263361 A263362 * A263364 A263365 A263366

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Oct 16 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 19:33 EDT 2021. Contains 346335 sequences. (Running on oeis4.)