login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A263021
Expansion of f(-x^3)^6 / (phi(-x) * phi(-x^3)) in powers of x where phi(), f() are Ramanujan theta functions.
3
1, 2, 4, 4, 6, 8, 9, 10, 8, 14, 14, 16, 16, 16, 20, 18, 22, 24, 21, 26, 28, 28, 28, 24, 36, 34, 36, 38, 32, 32, 40, 42, 44, 36, 46, 56, 43, 50, 40, 52, 54, 56, 54, 42, 60, 62, 64, 64, 56, 66, 56, 72, 70, 56, 74, 74, 76, 72, 64, 80, 81, 84, 84, 64, 76, 88, 88
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-3/4) * eta(q^2) * eta(q^3)^4 * eta(q^6) / eta(q)^2 in powers of q.
Euler transform of period 6 sequence [ 2, 1, -2, 1, 2, -4, ...].
a(3*n) = A261445(n). a(3*n + 1) = 2 * A260518(n). a(3*n + 2) = 4 * A260295(n).
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 9*x^6 + 10*x^7 + 8*x^8 + ...
G.f. = q^3 + 2*q^7 + 4*q^11 + 4*q^15 + 6*q^19 + 8*q^23 + 9*q^27 + 10*q^31 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^6 / (EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^3]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^4 * eta(x^6 + A) / eta(x + A)^2, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 07 2015
STATUS
approved