login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260518
Expansion of psi(x)^2 * f(-x^3)^3 / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.
3
1, 3, 5, 7, 8, 11, 13, 14, 17, 16, 21, 23, 25, 27, 21, 32, 33, 35, 37, 32, 42, 38, 45, 47, 40, 51, 56, 55, 50, 48, 61, 63, 64, 70, 56, 62, 73, 80, 77, 63, 81, 83, 74, 87, 72, 91, 98, 95, 104, 64, 101, 103, 105, 107, 88, 112, 98, 115, 114, 112, 121, 123, 125
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of psi(x) * psi(x^3) * f(x, x^2)^2 in powers of x where psi(), f() are Ramanujan theta functions.
Expansion of q^(-7/12) * eta(q^2)^4 * eta(q^3)^3 / eta(q)^3 in powers of q.
Euler transform of period 6 sequence [ 3, -1, 0, -1, 3, -4, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^k + x^(2*k))^3.
EXAMPLE
G.f. = 1 + 3*x + 5*x^2 + 7*x^3 + 8*x^4 + 11*x^5 + 13*x^6 + 14*x^7 + ...
G.f. = q^7 + 3*q^19 + 5*q^31 + 7*q^43 + 8*q^55 + 11*q^67 + 13*q^79 + ...
MATHEMATICA
a[ n_] := seriesCoefficient[ QPochhammer[ x^2]^4 QPochhammer[ x^3]^3 / QPochhammer[ x]^3, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A)^3 / eta(x + A)^3, n))};
(PARI) q='q+O('q^99); Vec(eta(q^2)^4*eta(q^3)^3/eta(q)^3) \\ Altug Alkan, Aug 01 2018
CROSSREFS
Sequence in context: A184415 A050111 A090542 * A190333 A190061 A288624
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 28 2015
STATUS
approved