OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/6) * eta(q^2)^6 * eta(q^4) / (eta(q)^4 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [4, -2, 4, -3, 4, -2, 4, -1, ...].
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2*sqrt(2*n)). - Vaclav Kotesovec, Oct 14 2015
EXAMPLE
G.f. = 1 + 4*x + 8*x^2 + 16*x^3 + 29*x^4 + 44*x^5 + 72*x^6 + 112*x^7 + ...
G.f. = 1/q + 4*q^5 + 8*q^11 + 16*q^17 + 29*q^23 + 44*q^29 + 72*q^35 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^2] QPochhammer[ -x, x^2]^4, {x, 0, n}];
nmax=60; CoefficientList[Series[Product[(1-x^k) * (1+x^k)^5 / ((1+x^(2*k)) * (1+x^(4*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^4 + A) / (eta(x + A)^4 * eta(x^8 + A)^2), n))};
(PARI) q='q+O('q^99); Vec(eta(q^2)^6*eta(q^4) / (eta(q)^4*eta(q^8)^2)) \\ Altug Alkan, Mar 18 2018
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Michael Somos, Jul 27 2015
STATUS
approved