login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261865
a(n) is the least integer k such that some multiple of sqrt(k) falls strictly between n and n+1.
7
2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 7, 2, 2, 2, 3, 2, 2, 15, 2, 2, 2, 3, 2, 2, 7, 2, 2, 5, 2, 2, 2, 5, 2, 2, 7, 2, 2, 2, 3, 2, 2, 13, 2, 2, 2, 3, 2, 2, 6, 2, 2, 3, 2, 2, 2, 6, 2, 2, 3, 2, 2, 2, 6, 2, 2, 5, 2, 2, 3, 2, 2, 2, 6, 2
OFFSET
1,1
COMMENTS
a(n) is squarefree for all n.
Record values occur at a(1)=2, a(3)=3, a(23)=7, a(30)=15, a(184)=38, a(8091)=43, a(16060)=46, a(16907)=58, a(20993)=61, a(26286)=97, a(130375)=118, a(169819)=127, a(2135662)=130, a(2345213)=187, a(222125822)=210, a(257240414)=227, ... - Jon E. Schoenfield, Sep 07 2015
a(n) > 2 iff n is in A001952. - Robert Israel, Aug 18 2016
EXAMPLE
a(40) = 5 because:
40 * sqrt(1) = 40 and 41 * sqrt(1) = 41
28 * sqrt(2) < 40 and 29 * sqrt(2) > 41
23 * sqrt(3) < 40 and 24 * sqrt(3) > 41
20 * sqrt(4) = 40 and 21 * sqrt(4) > 41
40 < 18 * sqrt(5) < 41
Thus sqrt(5) is the least integer root with integer multiple between 40 and 41.
MAPLE
f:= proc(n) local k;
for k from 2 do
if ceil(sqrt((n+1)^2/k)) - floor(sqrt(n^2/k)) >= 2 then return k fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Aug 18 2016
MATHEMATICA
Table[k = 2; While[Ceiling[Sqrt[(n + 1)^2/k]] - Floor[Sqrt[n^2/k]] < 2, k++]; k, {n, 120}] (* Michael De Vlieger, Aug 18 2016, after Maple *)
PROG
(Ruby) def a(n); (1..n**2+1).find { |k| (n/k**0.5+1).to_i*k**0.5 < n+1 } end
(PARI) ok(n, k)=h = floor((n+1)/sqrt(k)); (n < h*sqrt(k)) && (h*sqrt(k)< (n+1));
a(n) = my(k=1); while (!ok(n, k), k++); k; \\ Michel Marcus, Sep 04 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Kagey, Sep 03 2015
STATUS
approved