

A082204


Begin with a 1, then place the smallest (as far as possible distinct) digits, such that, beginning from the nth term, n terms form a palindrome.


2



1, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..104.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 1).


FORMULA

a(1) = 1; for k > 0, a(3k1) = a(3k) = 2; a(3k+1) = 3.  David Wasserman, Aug 19 2004


EXAMPLE

The first six palindromes are 1, 22, 232, 3223, 22322, 232232.


MATHEMATICA

Join[{1}, LinearRecurrence[{0, 0, 1}, {2, 2, 3}, 104]] (* Ray Chandler, Aug 25 2015 *)


CROSSREFS

Cf. A082205, A082206.
Sequence in context: A157439 A261865 A003589 * A152727 A087159 A218800
Adjacent sequences: A082201 A082202 A082203 * A082205 A082206 A082207


KEYWORD

base,easy,nonn


AUTHOR

Amarnath Murthy, Apr 10 2003


EXTENSIONS

More terms from David Wasserman, Aug 19 2004


STATUS

approved



