OFFSET
1,1
COMMENTS
Primes p such that (number of divisors of p * sum of divisors of p * product of divisors of p - 1) is also a prime.
See similar sequences of type primes p such that x is also a prime for some x wherein tau(p) = A000005(p) = number of divisors of p, sigma(p) = A000203(p) = sum of divisors of p and pod(p) = A007955(p) = product of divisors of p:
A001359 (for x = tau(p) + sigma(p) - 1) and x = tau(p) + pod(p)),
A005382 (for x = tau(p) * pod(p) - 1),
A005384 (for x = sigma(p) + pod(p), x = tau(p) * sigma(p) - 1 and x = tau(p) * pod(p) + 1),
A023200 (for x = tau(p) + sigma(p) + 1),
A023204 (for x = tau(p) + sigma(p) + pod(p) and x = tau(p) * sigma(p) + 1),
A053182 (for x = sigma(p) * pod(p) + 1),
A053184 (for x = sigma(p) * pod(p) - 1),
A158526 (for x = tau(p) * sigma(p) * pod(p) + 1).
For n >= 3, a(n) == 5 mod 6. - Robert Israel, Sep 02 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
3 and 2*3^2 + 2*3 - 1 = 23 are primes.
MAPLE
select(t -> isprime(t) and isprime(2*t^2 + 2*t-1), [2, 3, seq(6*i-1, i=1..1000)]); # Robert Israel, Sep 02 2015
MATHEMATICA
Select[Prime[Range[300]], PrimeQ[2 #^2 + 2 # - 1] &] (* Vincenzo Librandi, Sep 02 2015 *)
PROG
(Magma) [n: n in[1..10000] | IsPrime(n) and IsPrime(2*n*n + 2*n - 1)]
(PARI) is(n)=isprime(n)&&isprime(2*n^2 + 2*n - 1) \\ Anders Hellström, Sep 01 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Sep 01 2015
STATUS
approved