login
A261477
Number T(n,k) of set partitions of [n] into exactly k parts such that no part contains two elements with a circular distance less than three; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
10
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 7, 14, 7, 1, 0, 0, 0, 0, 7, 44, 42, 12, 1, 0, 0, 0, 1, 21, 138, 210, 102, 18, 1, 0, 0, 0, 0, 50, 458, 985, 720, 210, 25, 1, 0, 0, 0, 0, 77, 1397, 4400, 4587, 1980, 385, 33, 1
OFFSET
0,26
COMMENTS
The circular distance of 1 and n is 1 (for n>1).
LINKS
EXAMPLE
T(6,3) = 1: 14|25|36.
T(6,4) = 3: 14|25|3|6, 14|2|36|5, 1|25|36|4.
T(6,5) = 3: 14|2|3|5|6, 1|25|3|4|6, 1|2|36|4|5.
T(6,6) = 1: 1|2|3|4|5|6.
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 1;
0, 0, 0, 1;
0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 1;
0, 0, 0, 1, 3, 3, 1;
0, 0, 0, 0, 7, 14, 7, 1;
0, 0, 0, 0, 7, 44, 42, 12, 1;
0, 0, 0, 1, 21, 138, 210, 102, 18, 1;
0, 0, 0, 0, 50, 458, 985, 720, 210, 25, 1;
MAPLE
g:= proc(n, l, m, h) option remember;
`if`(n=0, `if`(1 in [l, m] or l=2, `if`(h<3, x^h, 0), x^h),
add(`if`(j in [l, m], 0, g(n-1, j, l, max(h, j))), j=1..h+1))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(g(n, 0$3)):
seq(T(n), n=0..14);
MATHEMATICA
g[n_, l_, m_, h_] := g[n, l, m, h] = If[n == 0, If[l == 1 || m == 1 || l == 2, If[h < 3, x^h, 0], x^h], Sum[If[j == l || j == m, 0, g[n - 1, j, l, Max[h, j]]], {j, 1, h + 1}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][g[n, 0, 0, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A000007, A063524, A185012, A079978 (for n>0), A261480, A261481, A261482, A261483, A261484, A261485, A261486.
Row sums give A261478.
T(2n,n) give A261479.
Main diagonal gives A000012.
Sequence in context: A119969 A051343 A356326 * A205826 A131193 A350479
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 20 2015
STATUS
approved