OFFSET
-1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * ((chi(-q) * chi(-q^15)) / (chi(-q^3) * chi(-q^5)))^3 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q) * eta(q^6) * eta(q^10) * eta(q^15) / (eta(q^2) * eta(q^3) * eta(q^5) * eta(q^30)))^3 in powers of q.
Euler transform of period 30 sequence [ -3, 0, 0, 0, 0, 0, -3, 0, 0, 0, -3, 0, -3, 0, 0, 0, -3, 0, -3, 0, 0, 0, -3, 0, 0, 0, 0, 0, -3, 0, ...].
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n/15)) / (2 * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 29 2018
EXAMPLE
1/q - 3 + 3*q - q^2 - 3*q^6 + 9*q^7 - 9*q^8 + 3*q^9 - 3*q^10 + 9*q^11 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q]*QP[q^6]*QP[q^10]*(QP[q^15] / (QP[q^2]*QP[q^3]* QP[q^5]*QP[q^30])))^3 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A) * eta(x^10 + A) * eta(x^15 + A) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^5 + A) * eta(x^30 + A)))^3, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 01 2012
STATUS
approved