login
A261474
Number of binary strings of length n+7 such that the smallest number whose binary representation is not visible in the string is 9.
2
0, 2, 12, 52, 168, 461, 1133, 2612, 5759, 12309, 25666, 52509, 105803, 210655, 415349, 812461, 1578752, 3050921, 5868562, 11244267, 21472441, 40887802, 77668032, 147222550, 278556477, 526215993, 992694708, 1870443330, 3520594166, 6620431857, 12439538938
OFFSET
0,2
LINKS
FORMULA
G.f.: (x^28 +x^27 -3*x^26 +4*x^25 +12*x^24 -20*x^23 -8*x^22 +55*x^21 -37*x^20 -85*x^19 +123*x^18 +21*x^17 -208*x^16 +117*x^15 +166*x^14 -227*x^13 -17*x^12 +235*x^11 -108*x^10 -122*x^9 +134*x^8 +8*x^7 -86*x^6 +31*x^5 +21*x^4 -18*x^3 +12*x^2 -8*x+2)*x / ((x+1) *(x^2-x+1) *(x^2+x-1) *(x^4-x^3+2*x-1) *(x^5+x^4+x-1) *(x^5+x^2+x-1) *(x^4-x^3+x^2+x-1) *(x^3+x^2-1) *(x^4+x-1) *(x-1)^3).
a(n) = A261019(n+7,9).
CROSSREFS
Column k=9 of A261019.
Sequence in context: A300572 A176580 A179259 * A350653 A080675 A218782
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Aug 20 2015
STATUS
approved