login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179259
Arises in covering a graph by forests and a matching.
1
2, 12, 52, 140, 294, 532, 872, 1332, 1930, 2684, 3612, 4732, 6062, 7620, 9424, 11492, 13842, 16492, 19460, 22764, 26422, 30452, 34872, 39700, 44954, 50652, 56812, 63452, 70590, 78244, 86432, 95172, 104482, 114380, 124884, 136012, 147782
OFFSET
0,1
COMMENTS
Kaiser proves that for any positive integer k and for epsilson = 1/((k+2)(3k^2+1)), the edges of any graph whose fractional arboricity is at most k + epsilon can be decomposed into $k$ forests and a matching.
LINKS
Tomas Kaiser, Mickael Montassier, Andre Raspaud, Covering a graph by forests and a matching, Jul 02, 2010.
FORMULA
a(n) = (n+2)*(3*n^2+1).
G.f.: -2*(-1-2*x-8*x^2+2*x^3)/(x-1)^4. a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). a(n) = 0 (mod 2). [From R. J. Mathar, Jul 08 2010]
EXAMPLE
a(4) = (4+2)*(3*4^2+1) = 294.
MATHEMATICA
CoefficientList[Series[-2*(-1-2*x-8*x^2+2*x^3)/(x-1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 04 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {2, 12, 52, 140}, 40] (* Harvey P. Dale, Apr 01 2019 *)
PROG
(Magma) I:=[2, 12, 52, 140]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
CROSSREFS
Sequence in context: A043007 A300572 A176580 * A261474 A350653 A080675
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jul 05 2010
STATUS
approved