OFFSET
1,1
COMMENTS
The active middle region of the triangle (see attached "Wolframesque" illustration) corresponds to the area where the growing tip(s) of the beanstalk are located. Successively larger "turbulences" occurring in that area appear approximately at the row numbers given by A218548 divided by two. The larger tendrils, (the finite side-trees) are, the longer there is vacillation in the direction of the growing region, which lasts until the growing tip of the infinite stem (A179016) has passed the topmost tips of the tendril. See also A218612.
LINKS
A. Karttunen, Table of n, a(n) for n = 1..256
EXAMPLE
Illustration how the growing beanstalk-tree produces the first four terms of this sequence. In this "compact" variant, each successive pair of numbers ((2,3), (4,5), (6,7), etc.) adds a new bud (\/) to the beanstalk, with the lesser numbers coming to the right hand side:
----------
..3...2...
....1.....
----------
5...4.....
.\./......
..3...2...
....1.....
----------
..7...6...
...\./....
5...4.....
.\./......
..3...2...
....1.....
----------
9...8.....
.\./......
..7...6...
...\./....
5...4.....
.\./......
..3...2...
....1.....
----------
Thus the first four terms of this sequence are 2, 12, 52 and 216.
PROG
(Scheme with memoization macro definec from Antti Karttunen's Intseq-library):
(definec (tree_for_A218782 n) (cond ((zero? n) (list)) ((= 1 n) (list (list))) (else (let ((new-tree (copy-tree (tree_for_A218782 (-1+ n))))) (add-bud-for-the-n-th-unbranching-tree-with-car-cdr-code! new-tree (A218790 n))))))
(define (add-bud-for-the-n-th-unbranching-tree-with-car-cdr-code! tree n) (let loop ((n n) (t tree)) (cond ((zero? n) (list)) ((= n 1) (list (list))) ((= n 2) (set-cdr! t (list (list)))) ((= n 3) (set-car! t (list (list)))) ((even? n) (loop (/ n 2) (cdr t))) (else (loop (/ (- n 1) 2) (car t))))) tree)
(define (copy-tree bt) (cond ((not (pair? bt)) bt) (else (cons (copy-tree (car bt)) (copy-tree (cdr bt))))))
(define (parenthesization->a014486 p) (let loop ((s 0) (p p)) (if (null? p) s (let* ((x (parenthesization->a014486 (car p))) (w (binwidth x))) (loop (+ (* s (expt 2 (+ w 2))) (expt 2 (1+ w)) (* 2 x)) (cdr p))))))
(define (binwidth n) (let loop ((n n) (i 0)) (if (zero? n) i (loop (floor->exact (/ n 2)) (1+ i))))) ;; (binwidth n) = A029837(n+1).
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 17 2012
STATUS
approved