login
A261480
Number of set partitions of [n] into exactly four parts such that no part contains two elements with a circular distance less than three.
2
1, 0, 3, 7, 7, 21, 50, 77, 164, 364, 672, 1330, 2787, 5474, 10797, 21945, 43841, 87031, 174812, 350175, 698302, 1397550, 2798250, 5591460, 11181661, 22374660, 44740503, 89467147, 178965787, 357927801, 715796390, 1431659537, 2863370744, 5726556304, 11453194452
OFFSET
4,3
FORMULA
G.f.: (2*x^3+2*x^2+1)*x^4/((x-1)*(2*x-1)*(x+1)*(x^2+x+1)*(2*x^2+x+1)).
EXAMPLE
a(4) = 1: 1|2|3|4.
a(6) = 3: 14|25|3|6, 14|2|36|5, 1|25|36|4.
a(7) = 7: 14|25|36|7, 14|25|37|6, 14|26|37|5, 15|26|37|4, 15|26|3|47, 15|2|36|47, 1|25|36|47.
a(8) = 7: 14|26|37|58, 14|27|36|58, 15|26|37|48, 15|26|38|47, 15|27|36|48, 16|25|37|48, 16|25|38|47.
CROSSREFS
Column k=4 of A261477.
Sequence in context: A157102 A226512 A270307 * A121172 A341539 A322934
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Aug 20 2015
STATUS
approved