This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261345 Number of distinct prime divisors among the numbers k^2 + 1 for k in 1 <= k <= n. 1
 1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 12, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 22, 22, 23, 24, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 32, 33, 34, 34, 35, 36, 37, 38, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 49, 50 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Conjecture: n/a(n) <= 1.6. Størmer-number-counting function: a(n) is the number of terms in A005528 less than or equal to n. - Luc Rousseau, Jun 13 2018 LINKS Michel Lagneau, Table of n, a(n) for n = 1..10000 EXAMPLE For a(5), there are 4 distinct prime divisors that occur in the values 1^2+1 = 2, 2^2+1 = 5, 3^2+1 = 2*5, 4^2+1 = 17, 5^2+1 = 26 = 2*13. Taken together, the distinct prime factors are {2,5,13,17}. MAPLE with(numtheory):nn:=100:lst:={}: for n from 1 to nn do:   p:=n^2+1:x:=factorset(p):n0:=nops(x):   A:={op(x), x[n0]}:   lst:=lst union A :n1:=nops(lst):printf(`%d, `, n1): od: MATHEMATICA Array[Length@ Tally@ First@ Transpose@ Flatten[FactorInteger[#^2 + 1] & /@ Range@ #, 1] &, {69}] (* Michael De Vlieger, Aug 18 2015 *) PROG (PARI) lista(nn) = {v = []; for (n=1, nn, v = Set(concat(v, factor(n^2+1)[, 1]~)); print1(#v, ", "); ); } \\ Michel Marcus, Aug 16 2015 CROSSREFS Cf. A002144, A002496, A002522, A089122, A005528. Sequence in context: A054633 A072490 A242493 * A243285 A085972 A136378 Adjacent sequences:  A261342 A261343 A261344 * A261346 A261347 A261348 KEYWORD nonn AUTHOR Michel Lagneau, Aug 15 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 00:28 EST 2019. Contains 320329 sequences. (Running on oeis4.)