

A261345


Number of distinct prime divisors among the numbers k^2 + 1 for k in 1 <= k <= n.


1



1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 12, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 22, 22, 23, 24, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 32, 33, 34, 34, 35, 36, 37, 38, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 49, 50
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Conjecture: n/a(n) <= 1.6.
Størmernumbercounting function: a(n) is the number of terms in A005528 less than or equal to n.  Luc Rousseau, Jun 13 2018


LINKS

Michel Lagneau, Table of n, a(n) for n = 1..10000


EXAMPLE

For a(5), there are 4 distinct prime divisors that occur in the values 1^2+1 = 2, 2^2+1 = 5, 3^2+1 = 2*5, 4^2+1 = 17, 5^2+1 = 26 = 2*13. Taken together, the distinct prime factors are {2,5,13,17}.


MAPLE

with(numtheory):nn:=100:lst:={}:
for n from 1 to nn do:
p:=n^2+1:x:=factorset(p):n0:=nops(x):
A:={op(x), x[n0]}:
lst:=lst union A :n1:=nops(lst):printf(`%d, `, n1):
od:


MATHEMATICA

Array[Length@ Tally@ First@ Transpose@ Flatten[FactorInteger[#^2 + 1] & /@ Range@ #, 1] &, {69}] (* Michael De Vlieger, Aug 18 2015 *)


PROG

(PARI) lista(nn) = {v = []; for (n=1, nn, v = Set(concat(v, factor(n^2+1)[, 1]~)); print1(#v, ", "); ); } \\ Michel Marcus, Aug 16 2015


CROSSREFS

Cf. A002144, A002496, A002522, A089122, A005528.
Sequence in context: A054633 A072490 A242493 * A243285 A085972 A136378
Adjacent sequences: A261342 A261343 A261344 * A261346 A261347 A261348


KEYWORD

nonn


AUTHOR

Michel Lagneau, Aug 15 2015


STATUS

approved



