login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261343
50-gonal numbers: a(n) = 48*n*(n-1)/2 + n.
1
0, 1, 50, 147, 292, 485, 726, 1015, 1352, 1737, 2170, 2651, 3180, 3757, 4382, 5055, 5776, 6545, 7362, 8227, 9140, 10101, 11110, 12167, 13272, 14425, 15626, 16875, 18172, 19517, 20910, 22351, 23840, 25377, 26962, 28595, 30276, 32005, 33782, 35607, 37480
OFFSET
0,3
COMMENTS
According to the common formula for the polygonal numbers: (s-2)*n*(n-1)/2 + n (here s = 50).
96*a(n) + 23^2 is a square.
FORMULA
a(n) = n*(24*n - 23).
G.f.: x*(1+47*x)/(1-x)^3. - Vincenzo Librandi, Aug 17 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Aug 17 2015
E.g.f.: exp(x)*(x + 24*x^2). - Nikolaos Pantelidis, Feb 10 2023
MAPLE
A261343:=n->n*(24*n-23): seq(A261343(n), n=0..40); # Wesley Ivan Hurt, Aug 20 2015
MATHEMATICA
PolygonalNumber[50, Range[0, 40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 11 2019 *)
PROG
(JavaScript) function a(n){return 48*n*(n-1)/2+n}
(PARI) first(m)=vector(m, n, n--; n*(24*n-23)) \\ Anders Hellström, Aug 15 2015
(Magma) [n*(24*n-23): n in [0..40]]; // Vincenzo Librandi, Aug 17 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sergey Pavlov, Aug 15 2015
STATUS
approved