login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261116
Pairs of integers (a,b) such a^2 + (a+1)^2 = b^2.
1
0, 1, 3, 5, 20, 29, 119, 169, 696, 985, 4059, 5741, 23660, 33461, 137903, 195025, 803760, 1136689, 4684659, 6625109, 27304196, 38613965, 159140519, 225058681, 927538920, 1311738121, 5406093003, 7645370045, 31509019100, 44560482149, 183648021599, 259717522849
OFFSET
1,3
COMMENTS
Can also be seen as a table with two columns, read by rows: T[n,1] = a(2n-1) = A001652(n), T[n,2] = a(2n) = A001653(n).
The conjectured recurrence formula and g.f. are proved by the formulas for A001652. - M. F. Hasler, Aug 11 2015
FORMULA
From Colin Barker, Aug 09 2015: (Start)
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6) for n>6.
G.f.: -x^2*(x^4-x^3-2*x^2+3*x+1) / ((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)).
(End)
a(2n-1)=A001652(n), a(2n)=A001653(n). - M. F. Hasler, Aug 11 2015
EXAMPLE
a(5) = 20 and a(6) = 29, because 20^2 + 21^2 = 29^2.
MATHEMATICA
LinearRecurrence[{0, 7, 0, -7, 0, 1}, {0, 1, 3, 5, 20, 29}, 50] (* Paolo Xausa, Jan 31 2024 *)
PROG
(PARI) concat(0, Vec(-x^2*(x^4-x^3-2*x^2+3*x+1) / ((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^50))) \\ Colin Barker, Aug 12 2015
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Marco Ripà, Aug 08 2015
EXTENSIONS
Edited by M. F. Hasler, Aug 11 2015
STATUS
approved