login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pairs of integers (a,b) such a^2 + (a+1)^2 = b^2.
1

%I #33 Jan 31 2024 08:07:15

%S 0,1,3,5,20,29,119,169,696,985,4059,5741,23660,33461,137903,195025,

%T 803760,1136689,4684659,6625109,27304196,38613965,159140519,225058681,

%U 927538920,1311738121,5406093003,7645370045,31509019100,44560482149,183648021599,259717522849

%N Pairs of integers (a,b) such a^2 + (a+1)^2 = b^2.

%C Can also be seen as a table with two columns, read by rows: T[n,1] = a(2n-1) = A001652(n), T[n,2] = a(2n) = A001653(n).

%C The conjectured recurrence formula and g.f. are proved by the formulas for A001652. - _M. F. Hasler_, Aug 11 2015

%H Colin Barker, <a href="/A261116/b261116.txt">Table of n, a(n) for n = 1..1000</a>

%H V. Pletser, <a href="http://arxiv.org/abs/1409.7972">Finding all squared integers expressible as the sum of consecutive squared integers using generalized Pell equation solutions with Chebyshev polynomials</a>, arXiv preprint arXiv:1409.7972 [math.NT], 2014. See Table 3 p. 8.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,7,0,-7,0,1).

%F From _Colin Barker_, Aug 09 2015: (Start)

%F a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6) for n>6.

%F G.f.: -x^2*(x^4-x^3-2*x^2+3*x+1) / ((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)).

%F (End)

%F a(2n-1)=A001652(n), a(2n)=A001653(n). - _M. F. Hasler_, Aug 11 2015

%e a(5) = 20 and a(6) = 29, because 20^2 + 21^2 = 29^2.

%t LinearRecurrence[{0, 7, 0, -7, 0, 1}, {0, 1, 3, 5, 20, 29}, 50] (* _Paolo Xausa_, Jan 31 2024 *)

%o (PARI) concat(0, Vec(-x^2*(x^4-x^3-2*x^2+3*x+1) / ((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^50))) \\ _Colin Barker_, Aug 12 2015

%Y Cf. A001652, A001653, A260819.

%K nonn,tabf,easy

%O 1,3

%A _Marco Ripà_, Aug 08 2015

%E Edited by _M. F. Hasler_, Aug 11 2015