login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260770
Certain directed lattice paths.
2
1, 6, 35, 207, 1251, 7678, 47658, 298371, 1880659, 11918586, 75871710, 484793950, 3107494430, 19973075580, 128678167220, 830735862179, 5372968238979, 34807369089378, 225818672567382, 1466956891774602, 9540909022501226, 62119854068610436, 404854330511525580
OFFSET
0,2
COMMENTS
See Dziemianczuk (2014) for precise definition.
LINKS
M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
FORMULA
See Dziemianczuk (2014) Equation (29a) with m=1.
From Vaclav Kotesovec, Jul 15 2022: (Start)
Recurrence: (n-2)*n*(n+1)*(100*n^3 - 510*n^2 + 677*n - 111)*a(n) = -6*n*(40*n^3 - 5*n^2 - 586*n + 863)*a(n-1) + 4*(n-1)*(1100*n^5 - 6710*n^4 + 12387*n^3 - 3775*n^2 - 8723*n + 5448)*a(n-2) - 72*(n-2)*(n-1)*(10*n^2 - 5*n - 24)*a(n-3) + 16*(n-3)*(n-2)*(n-1)*(100*n^3 - 210*n^2 - 43*n + 156)*a(n-4).
a(n) ~ sqrt((4*phi^6 - 1)/5 + phi^(11/2)) * 2^(n-1) * phi^(5*n/2) / sqrt(Pi*n), where phi = A001622 is the golden ratio. (End)
CROSSREFS
Sequence in context: A352972 A180033 A354134 * A262717 A144638 A291246
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 30 2015
EXTENSIONS
More terms from Lars Blomberg, Aug 01 2015
STATUS
approved