login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Certain directed lattice paths.
2

%I #15 Jul 15 2022 05:50:37

%S 1,6,35,207,1251,7678,47658,298371,1880659,11918586,75871710,

%T 484793950,3107494430,19973075580,128678167220,830735862179,

%U 5372968238979,34807369089378,225818672567382,1466956891774602,9540909022501226,62119854068610436,404854330511525580

%N Certain directed lattice paths.

%C See Dziemianczuk (2014) for precise definition.

%H Lars Blomberg, <a href="/A260770/b260770.txt">Table of n, a(n) for n = 0..100</a>

%H M. Dziemianczuk, <a href="http://arxiv.org/abs/1410.5747">On Directed Lattice Paths With Additional Vertical Steps</a>, arXiv preprint arXiv:1410.5747 [math.CO], 2014.

%F See Dziemianczuk (2014) Equation (29a) with m=1.

%F From _Vaclav Kotesovec_, Jul 15 2022: (Start)

%F Recurrence: (n-2)*n*(n+1)*(100*n^3 - 510*n^2 + 677*n - 111)*a(n) = -6*n*(40*n^3 - 5*n^2 - 586*n + 863)*a(n-1) + 4*(n-1)*(1100*n^5 - 6710*n^4 + 12387*n^3 - 3775*n^2 - 8723*n + 5448)*a(n-2) - 72*(n-2)*(n-1)*(10*n^2 - 5*n - 24)*a(n-3) + 16*(n-3)*(n-2)*(n-1)*(100*n^3 - 210*n^2 - 43*n + 156)*a(n-4).

%F a(n) ~ sqrt((4*phi^6 - 1)/5 + phi^(11/2)) * 2^(n-1) * phi^(5*n/2) / sqrt(Pi*n), where phi = A001622 is the golden ratio. (End)

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jul 30 2015

%E More terms from _Lars Blomberg_, Aug 01 2015