login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260524
Pseudoprimes to bases 2, 3, 5 and 7 that are congruent to 5 (modulo 6) but are not Carmichael numbers (A002997).
1
468950021, 493108481, 659846021, 5936122901, 8144063621, 11408333333, 12601267541, 14252656133, 18074903681, 27223783841, 30633711701, 31093792133, 31797754721, 61426533761, 65085388961, 86610942881, 91945013333, 92380393121, 102538073177
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
fQ[n_] := !PrimeQ[n] && PowerMod[2, n - 1, n] == 1 &&
> PowerMod[3, n - 1, n] == 1 && PowerMod[5, n - 1, n] == 1 && PowerMod[7, n - 1, n] == 1 && Mod[n, CarmichaelLambda[n]] != 1; k = 1; lst = {}; While[k < 25000000001, If[ fQ@ k, AppendTo[lst, k]; Print@ k]; k += 6]; lst
PROG
(PARI) Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
is(n)=n%6==5 && Mod(2, n)^n==2 && Mod(3, n)^n==3 && Mod(5, n)^(n-1)==1 && Mod(7, n)^(n-1)==1 && !isprime(n) && !Korselt(n) \\ Charles R Greathouse IV, Jul 29 2015
(Perl) use ntheory ":all"; foroddcomposites { say if $_%6 == 5 && is_pseudoprime($_, 2, 3, 5, 7) && $_ % carmichael_lambda($_) != 1; } 1e9; # Dana Jacobsen, Sep 07 2015
CROSSREFS
Cf. A153581.
Sequence in context: A349747 A323653 A246548 * A091677 A147717 A127888
KEYWORD
nonn
EXTENSIONS
a(9)-a(19) from Charles R Greathouse IV, Jul 29 2015
STATUS
approved