login
A127888
If X_1,...,X_n is a partition of a 6n-set X into 6-blocks then a(n) is equal to the number of permutations f of X such that f(X_i)<>X_i, (i=1,...n).
1
0, 478483200, 6401339808768000, 620429964386047303680000, 265250626231132937174895820800000, 371992180902371387782970387300352000000000
OFFSET
1,2
FORMULA
a(n)=sum((-720)^i*binomial(n,i)*(6*n-6*i)!,i=0..n).
EXAMPLE
a(5)=265250626231132937174895820800000
MAPLE
a:=n->sum((-720)^i*binomial(n, i)*(6*n-6*i)!, i=0..n).
CROSSREFS
Sequence in context: A260524 A091677 A147717 * A072232 A011523 A172535
KEYWORD
nonn
AUTHOR
Milan Janjic, Apr 09 2007
STATUS
approved