login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260325
Triangle read by rows: T(n,k) = logarithmic polynomial A_k^(n)(x) evaluated at x=-1.
4
1, 2, 1, 5, 2, 2, 16, 9, 6, 6, 65, 28, 12, 24, 24, 326, 185, 140, 60, 120, 120, 1957, 846, 750, 120, 360, 720, 720, 13700, 7777, 2562, 5250, 840, 2520, 5040, 5040, 109601, 47384, 47096, 40656, 1680, 6720, 20160, 40320, 40320, 986410, 559953, 378072, 181944, 365904, 15120, 60480, 181440, 362880, 362880
OFFSET
1,2
LINKS
J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. Gives first 10 rows. [Annotated scanned copy]
EXAMPLE
Triangle begins:
1;
2, 1;
5, 2, 2;
16, 9, 6, 6;
65, 28, 12, 24, 24;
326, 185, 140, 60, 120, 120;
1957, 846, 750, 120, 360, 720, 720;
...
MAPLE
A260325 := proc(n, r)
if r = 0 then
1 ;
elif n > r+1 then
0 ;
else
add( 1/(r-j*n+1)!, j=1..(r+1)/n) ;
%*r! ;
end if;
end proc:
for r from 0 to 20 do
for n from 1 to r+1 do
printf("%a, ", A260325(n, r)) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Jul 24 2015
MATHEMATICA
T[n_, k_] := Which[n == 0, 1, k > n+1, 0, True, Sum[1/(n-j*k+1)!, {j, 1, (n+1)/k}]*n!];
Table[T[n, k], {n, 0, 9}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Apr 25 2023 *)
CROSSREFS
Rows, column sums give A000522, A002747, A002750, A002751.
Main diagonal gives A000142.
Sequence in context: A110874 A010253 A065274 * A136262 A162180 A090003
KEYWORD
sign,tabl
AUTHOR
N. J. A. Sloane, Jul 23 2015
STATUS
approved