login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002747
Logarithmic numbers.
(Formerly M1924 N0759)
5
1, -2, 9, -28, 185, -846, 7777, -47384, 559953, -4264570, 61594841, -562923252, 9608795209, -102452031878, 2017846993905, -24588487650736, 548854382342177, -7524077221125234, 187708198761024553, -2859149344027588940, 78837443479630312281, -1320926996940746090302
OFFSET
1,2
COMMENTS
abs(a(n)) is also the number of distinct routes starting from a point A and ending at a point B, without traversing any edge more than once, when there are n bi-directional edges connecting A and B. E.g., if there are 3 edges p, q and r from A to B, then the 9 routes starting from A and ending at B are p, q, r, pqr, prq, rpq, rqp, qpr and qrp. - Nikita Kiran, Sep 02 2022
Reducing the sequence modulo the odd integer 2*k + 1 results in a purely periodic sequence with period dividing 4*k + 2, For example, reduced modulo 5 the sequence becomes the purely periodic sequence [1, 3, 4, 2, 0, 4, 2, 1, 3, 0, 1, 3, 4, 2, 0, 4, 2, 1, 3, 0, ...] with period 10. - Peter Bala, Sep 12 2022
REFERENCES
J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
E.g.f.: x/exp(x)/(1-x^2). - Vladeta Jovovic, Feb 09 2003
a(n) = n*((n-1)*a(n-2)-(-1)^n). - Matthew Vandermast, Jun 30 2003
From Gerald McGarvey, Jun 06 2004: (Start)
For n odd, a(n) = n! * Sum_{i=0..n-1, i even} 1/i!.
For n even, a(n) = n! * Sum_{i=1..n-1, i odd} 1/i!.
For n odd, lim_{n->infinity} a(n)/n! = cosh(1).
For n even, lim_{n->infinity} a(n)/n! = sinh(1).
For n even, lim_{n->infinity} n*a(n)*a(n-1)/n!^2 = cosh(1)*sinh(1).
For signed values, Sum_{n>=1} a(n)/n!^2 = 0.
For unsigned values, Sum_{n>=1} a(n)/n!^2 = cosh(1)*sinh(1). (End)
a(n) = (-1)^(n-1)*Sum_{k=0..n} C(n, k)*k!*(1-(-1)^k)/2. - Paul Barry, Sep 14 2004
a(n) = (-1)^(n+1)*n*A087208(n-1). - R. J. Mathar, Jul 24 2015
a(n) = (exp(-1)*Gamma(1+n,-1) - (-1)^n*exp(1)*Gamma(1+n,1))/2 = (A000166(n) - (-1)^n*A000522(n))/2. - Peter Luschny, Dec 18 2017
MAPLE
a:= proc(n) a(n):= n*`if`(n<2, n, (n-1)*a(n-2)-(-1)^n) end:
seq(a(n), n=1..25); # Alois P. Heinz, Jul 10 2013
MATHEMATICA
egf = x/Exp[x]/(1-x^2); a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Jan 17 2014, after Vladeta Jovovic *)
a[n_] := (Exp[-1] Gamma[1 + n, -1] - (-1)^n Exp[1] Gamma[1 + n, 1])/2;
Table[a[n], {n, 1, 22}] (* Peter Luschny, Dec 18 2017 *)
PROG
(PARI) a(n) = (-1)^(n+1)*sum(k=0, n, binomial(n, k)*k!*(1-(-1)^k)/2); \\ Michel Marcus, Jan 13 2022
CROSSREFS
KEYWORD
sign
EXTENSIONS
More terms from Jeffrey Shallit
More terms from Vladeta Jovovic, Feb 09 2003
STATUS
approved