login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002744
Sum of logarithmic numbers.
(Formerly M4682 N2001)
5
1, 0, 1, 10, -17, 406, -1437, 20476, -44907, 1068404, -5112483, 230851094, -1942311373, 31916614874, -27260241361, 3826126294680, -37957167335671, 2169009251237640, -25847377785179111, 858747698098918338, -5611513985867158697, 154094365406716365118
OFFSET
1,4
REFERENCES
J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. [Annotated scanned copy]
J. M. Gandhi, Logarithmic Numbers and the Functions d(n) and sigma(n), The American Mathematical Monthly, Vol. 73, No. 9 (1966), pp. 959-964, alternative link.
FORMULA
a(n) = Sum_{k=1..n} (-1)^(n-k)*A000005(k)*(k-1)!*binomial(n, k). - Vladeta Jovovic, Feb 09 2003
E.g.f.: -exp(-x) * log(Product_{k>=1} (1 - x^k)^(1/k)). - Ilya Gutkovskiy, Dec 11 2019
a(p) == -2 (mod p) for prime p. The pseudoprimes of this congruence are 4, 6, 20, 42, 1806, ... - Amiram Eldar, May 13 2020
MATHEMATICA
a[n_] := n! * Sum[(-1)^k * DivisorSigma[0, n - k]/k!/(n - k), {k, 0, n - 1}]; Array[a, 22] (* Amiram Eldar, May 13 2020 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(n-k)*numdiv(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020
CROSSREFS
KEYWORD
sign
EXTENSIONS
Corrected and extended by Jeffrey Shallit
More terms from Vladeta Jovovic, Feb 09 2003
STATUS
approved